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Computer simulation of impression creep by 
the finite element method 

HSIANG-YUNG YU, J.C.M. L! 
Materials Science Program, Department of Mechanical and Aerospace Sciences, University 
of Rochester, Rochester, New York, USA 

The steady state impressing velocity of the punch during an impression creep test is 
calculated by the finite element method based on a single power law constitutive 
equation for the deformation of each and every element. The calculated impressing 
velocities and their stress dependence agree very well with the experimental values on 
succinonitrile crystals using empirical power laws obtained from unidirectional creep 
tests. 

1. Introduction 
In a preceding paper*, a new creep test is intro- 
duced. It is a modified indentation test with a 
cyl/ndrical flat-end indenter. A steady-state velocity 
is observed in this new test, which has the same 
stress and temperature dependences as conventional 
creep tests using bulk specimens. Two mechanisms 
have been analysed; bulk diffusion and surface dif- 
fusion. A third mechanism, dislocation creep, is 
analysed in this paper by the finite element method. 
The results are compared with experiments on 
succinonitrile crystals. 

Finite element method has been used widely in 
engineering applications [1, 2],  mainly because of 
the availability of  large-memory computers. The 
principle involved is very simple. The system is 
divided into a number of volume elements in the 
form of polyhedrons, or other well defined shapes. 
The corners of the polyhedrons, or the nodes, are 
to assume new positions under prescribed boundary 
conditions. The compatibility requirements are 
fulfilled automatically if the polyhedral shapes are 
retained for each element. Stress and strain may 
not be continuous at the boundaries between the 
elements. Instead, equilibrium or steady-state con- 
ditions are established by minimizing certain 
quantities such as the potential energy for elastic 
equilibrium. 

The incremental procedure used by Greenbaum 

assumptions were made: (1 )The  material is iso- 
tropic and homogeneous; (2) the system is iso- 
thermal; (3) a power law creep equation is appli- 
cable to each and every element; (4) displacements 
and strains are small so that small deformation 
theory is applicable; (5) the displacement at any 
point inside an element is a linear function of the 
cylindrical co-ordinates of that point. 

2. The element, displacement, and strain 
For the present axi-symmetric problem, the con- 
venient shape of the element is a volume of revol- 
ution of triangular cross-section, as shown in Fig. 
1. Because of the axi-symmetry, the nodal points i, 
j, k can move in only two dimensions; hence the 
problem becomes two dimensional. The displace- 

and Rubinstein [3], somewhat modified and cor- z 
rected, was adopted for this work. The following Figure 1 An element in an axi-symmetric solid. 
* S. N. G. CHU and J. C. M. LI, J. Mater. Sei. 12 (1977) 2200. 
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ment of each node has two components, u i in the 
r-direction and w i in the z-direction. Hence for 
each element, six components of the three nodal 
displacements define completely the position of 
the element. Let {5} be a column vector of these 
components. Its transpose is 

{5} T = {b/i, Wi, b/j, Wj,  b/k, Wk}" (1 )  

The displacement at any point (r, z) inside the 
element is assumed to be a linear function of r  and 
z. This assumption assures that the triangular 
shape is retained all the time so that the elements 
remain compatible to each other. The linear func- 
tion can be determined from the co-ordinates ri, 
z i, etc. of the three nodal points and { 5 }T. It can 
be easily shown that the two-component displace- 
ment vector {5"} T = {u, w}at ( r , z )  is 

{5*} = [L]{5} (2) 

where [L] is a 2 x 6 matrix, 

with 

3 = 

= ! [ L i  0 Lj 0 L k 0 ] ,  (3) 

[L] 1310 L i 0 Lj 0 Lk 

1 r i z i [ 

1 rj zj 1' 
1 rk Zk 

Z i = I 1 rj zj , etc. 

1 r k z k 

(4) 

Note that Li, etc. contain the co-ordinates (r, z). 
Knowing the displacements at any point, the 

strain components at (r, z) can be obtained by dif- 
ferentiation;. . 

l:/ 
terz j O u / a z ) r  + (Ow/Or)z) 

It is seen that all components of strain except e00 
are uniform within the element. Note that the 
shear strain is "engineering" rather than tensorial, 
and that the strain is overall and can include creep 
strain. 

Substituting Equation 2 into Equation 5 gives 

{e} = [BI{8} (6) 

where [B] is the following 4 x 6 matrix: 

fz o 1 j--Zk 

[BI = ~ / L i / r  

/ 
E k -  rj 

-=1 
r k -  rj 0 ri --  rk 0 rj - -  ri[ 

/ 
0 Zk- -  Zi 0 Z i -  Zj 0 / 

0 J 0 Lj/r 0 Lk/r 

z j - - z  k r i - r  k z k - z  i r j - - r  i zi--z 

(7) 

3. The stress and the potential energy 
Since the total strain {E} may contain creep strain 
{ Ee}, the elastic strain at (r, z )  is 

= {,=}_ (8) 

from which the stress components can be obtained 
from linear elasticit' i: 

{~ _= = _ _ 2 "  

1 -- 2v v 

tOrz j o 

x { d %  

v v i )/21 
1 - - b '  /2 

p 1--12 

0 0 (1 -- 2v 

(9) 

where p and v are shear modulus and Poisson's 
ratio respectively. 

The potential energy of the system is defined as 
its strain energy minus the external work done on 
the system. In the present case, it is the strain 
energy of all the elements minus the external work 
done by the punch, namely 

c~ 3 

1 aV 1 
(10) 

where a is the total number of elements, V is the 
volume of each element,/3 is the number of those 
elements directly under the punch, and {%}T = 
{{3, a z } is a two-component vector of surface stress 
applied by the punch over the surface S of each of 
these elements. 

The potential energy can be minimized with 
respect to all the nodal displacements. Let N be 
the total number of nodes, Equation 10 is a func- 
tion of 2N variables. However, the expression is in 
a form convenient for differentiation with respect 
to the nodal displacements of each element , 
namely, 6a variables, but under the obvious con- 
straint that all common nodes must have the same 
displacements. By using the 6a variables, the equi- 
librium conditions can be obtained by introducing 
6 a -  2N Lagrange indeterminate multipliers. By 
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substituting Equations 2, 6, and 8, Equation 10 
can be differentiated to give, holding creep strain 
constant, 

~ dU = 2 V{8}T [B] W [D] [B] dV 

- -  iv {Ec}T[D] [B]dV 
I 

-- IS {aa} T [L] dS -- {M}T / d{6}  
J 

(11) 

where {M} is a 6 x 1 column matrix of the six 
Lagrange multipliers. The constraint of identical 
displacements at a common node requires that the 
multipliers at each node add up to zero. The 
potential energy is a minimum when the 1 x 6 
matrix of the bracket of Equation 11 is zero. The 
surface integral in Equation 11 applies on13~ to 
those elements under the punch, that is {aa} T = 
{0, 0} for all elements except the ones directly 
under the punch. Let 

[K] = iv  [BIT[D] [B] dV (12) 

{Fe} = Yv [ B I T [ D ] { e c } d V  (13) 

= I s  [ L ] T { a a } d S  (14) 

{F} = {M}+{Fa}+{F c} (15) 

where the 6 x 1 column vectors {F c} and {F a} can 
be considered as creep forces and applied forces 
respectively, as if they are exerted on the nodes. 
Then the equilibrium condition is simply 

[K]{8} = {F} (16) 

for each element. However, because of the indeter- 
minate multipliers, the equilibrium conditions for 
the dements are difficult to solve directly but can 
be assembled into a set of 2N equations for the 
whole body (N = number of nodes): 

[Klb{8}b = {F}b (17) 

where [K] b is a 2N x 2N stiffness matrix and { 8}b 
and {F}b .are 2N x 1 displacement and nodal-force 
column vectors respectively. Then the multipliers 
add up to zero at each common node and there are 
no multipliers for isolated nodes. The problem 
becomes a simple matrix inversion scheme directly 
solvable by a computer without iteration. 
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4. Power law of creep 
So far the creep strain has been held constant in 
minimizing the potential energy; determining 
creep strain from stress is an unsolved problem in 
plasticity. For unidirectional creep tests, the creep 
rate is generally found to be a power law of stress, 
namely 

A e  c = A a n A t  (18) 

where A and n are constants at constant tempera- 
ture, AeCe/At is the ~creep rate; and (r e is the unidi- 
rectional stress. The creep compliance is usually 
defined as 

Aeee - Aae n-lAt.  (19) 
(re 

For the triaxial situation within each element, 
the creep compliance still can be calculated by 
Equation 19 except that Oe is replaced by the 
equivalent creep stress of the yon Mises criterion 

o ,  = - (roo) = + (Ooo - (r z) = 

+ ((r,z - O,'r) 2 + " 2 , 1/2 oar, J ix/O). 
(20) 

The following incremental flow rule is then used 
to calculate other creep strains: 

i - 1  - 1  00] A -- 2 - 1  
~  1 { . }  a t  _12:j 

0 0 

(21) 

Note that since as0 is not uniform within the 
C _C element, neither are ae and {A e }. However, {A ~ } 

can be calculated if {~} at the centroid of the 
triangle is used in Equation 21. 

5. Approximations and programming 
The stiffness matrix for each element, Equation 12 
can be approximated by using an average [B], 
namely, by replacing (r, z) with (f, ~) the co- 
ordinates of the centroid of the triangle. Then 
/~i = Lj =/~k =/3/3. Let this average [B] be [/~]. 
The stiffness matrix is then simply 

[K] = ~rel/31 [t7] T [O] [/7] (22) 

where /3 is given by Equation 4 and is twice the 
area of the triangle. Although/3 may be + depending 
on the order of ijk, the area of the triangle is posi- 



tive always. Similarly the creep force can be 
approximated by 

{F c} = ~el#[ [/71T [D] {Agc } (23) 

where {A~ e} is calculated from Equation 21 at the 
centroid of the triangle for a certain time period 
At to be assigned later. 

I 
1 
I 

Z 

~.r 

Figure 2 The boundary elements over which the external 
load is applied. 

Since the surface force, Equation 14 applies 
only to the elements directly under the punch as 
shown in Fig. 2, two of the nodal points such as i 
and j have the same z co-ordinate. Integration over 
the stressed surface gives 

where 

and 

{0, Ni, 0, 0, 0}, {Fa} T = ~-~ (24) 

Ni = (ri -- rj) 2 (zi -- Zk)(2ri + rj)Oz (25) 

Nj = (r  i - - r j ) 2 ( z i  - -2k)@i  Jr 2rj)Oz (26) 

The programming procedure is as follows: At 
time zero, the elastic stresses are determined by 
using Equation 17 for the whole system without 
the creep force. The 2N x 2N stiffness matrix is 
assembled, using Equation 22 for each element. 
For a given cr z, the external force is calculated by 
Equation 24 for each element and assembled into 
a 2N x 1 column vector. The solution of Equation 
17 is by matrix inversion. From the displacements 
of the nodes, strain can be calculated from 
Equation 6 and stress from Equation 9. As dis- 
cussed earlier, average values can be obtained by 
using centroid co-ordinates. 

The elastic stresses calculated are assumed con- 
stant for the next time increment At. The creep 
strain is obtained by Equation 21 knowning the 
unidirectional creep law of Equation 18. Then the 
creep force is calculated by Equation 23 which can 
be assembled into a 2N x 1 column vector. The in- 
cremental displacement due to this creep force is 
again solved by Equation 17 using matix inversion. 
Such incremental displacement produces punch 
motion, as well as an incremental total strain given 
by Equation 6, from which the elastic part is given 
by Equation 8. The incremental stress calculated 
by Equation 9 is then added to the stress at time 
zero. This incremental stress should be smaller 
than the starting elastic stress to justify the con- 
stant stress assumption for the time interval At. I f  
not, the interval At should be reduced. The pro- 
cedure is then repeated for the next time interval. 

According to Sutherland [4], the maximum 
time interval at any stage must be such that the in- 
cremental creep strain given by Equation 18 is not 
greater than the elastic strain. In other words, the 
creep compliance should be smaller than the elastic 
compliance of the matrial. Otherwise, the pro- 
cedure may become unstable. In the present case, 
the first time interval is calculated by 

At1 = fo/2p(1 + n-1 ")A(ae)m x (27) 
where fro is set equal to 0.1. Subsequent intervals 
are calculated by 

Ati+l = ~i(At)i(Oe/Aae)min (28) 

where ~i is again set equal to 0.1. Furthermore 
A 4 + I / A t  i has an upper limit of 2 to assure con- 
vergence of the calculation. A schematic diagram 
for the program is shown in Fig. 3. 

6. Results on succinonitrile crystals 
The arrangement of the elements is shown in Fig. 
4, as cross-sections of the volumes of revolution. 
The radius of the punch is a. The specimen has a 
diameter of 64a and a length of 72a. There are 186 
elements and 113 nodes. 

To test the program, the elastic stress field is 
calculated first. From the elastic constants and 
their temperature dependences reported by 
Fontaine and Moriamez [5] for single crystals, a 
set of isotropic constants are calculated by using 
both Voigt and Reuss averages [6], and is found 
to be p = 6 . 8 3 x  l0 s N m  -2 and p = 0 . 4 1 6  at 
37 ~ C. The two averages turn out to be almost 
identical. The computed zz component of stress 
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INPUT DATA 
Material constants,~,~,A, & 
Element No. & Nodal No. 
associated with each element 
in clockwise order 

3. Nodal Coordinates 
4. Initial Boundary Condition 
5. Number of intervals N, M 
6. Time interval control ~i 
7, SteadY=stXte-test S 

Calculate theiYes 
nodal forces ~ cT~;;~r "~ 
under the I " ~ ' ~ s  ~/";"'~" 
punch I @{_l ~alculate Matrices [O], [B] 

q & [K]; assemble [K]b& {F) b 

_ i 

+ 
n I Calculate Initial ] 

time increment At i 

I 
Calculate I 

A~eC & ~e E = ae/E [~ 

I Calculate I 
{F c} & {A~ c} 

I 
I 

Calculate the change I 
of nodal displacement I {A6} & new stress @ 

G 

Solve matrix eq. I distribution 

[K] b {6} b = {F} b / ~  

Calculate element stress 

.~<~-= EDI r~l .~<~:~ I~ PRINT 0'~ /,<es . - ' X Z 2  
i / / INTERMEDIATE~ - ~  

/ RESULTS 1 Y 
] Calculate average stress I 
[ at nodal points I ,,ef~ , 

\ PRINT OUT ELASTIC / 
\ RESTLTS / / PRINT OUT Yes~/A~_ \ 

[ ~ FINAL - ~ ) _ _ _ <  1 0 - ~ / ~  
~ RESULTS ~ / ' ~  

Yes ~Elastic Str~ i i 

I N~ ~ l No 
I i = i + ~ _  I 

(Ati) "~i 
A t i+l= --~de-i- - -  

k % " max 

Ati+l = 1.2Ati] 

Figure 3 The flow chart for the impression creep computer program. 

along the z-axis is compared with theoretical values 
and is shown in Fig. 5. For the uniform-stress 
boundary condition under the punch, the elastic 
problem was solved by Terazawa [7] for the semi- 
infinite medium. The z z  stress along the z-axis is 
given by 

Z 3 
O z z _  1 a2)3/2 (29) o (z 2 + 

22!8  

where o is the punching stress. For the uniform- 
displacement boundary condition under the 
punch, the elastic problem was solved by Harding 
and Sneddon [8], also for the semi-infinite me- 
dium. In this case the z z  stress along the z-axis is 
given by 

azz (3z 2 + a2)a  2 
o - 2(z 2 + a 2 )  2 (30) 
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Figure 4 The layout of elements for impression 
creep analysis. 

Figure 5 A comparison between 
calculated and theoretical stresses 
under punch. 
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Figure 6 The yon Mises stresses 
under punch. 

Equations 29 and 30 are plotted in Fig. 5 as curves 
with a factor of  4 displaced from each other on 
the z /a  axis for clarity. Although at z = 0, Equation 
29 gives 1 and Equation 30 gives 0.5, both 
approach 3a2/2z 2 for large z. Note also that while 
Equation 29 is monotonic, Equation 30 has a 
maximum value of 9/16 at a2/z  2 = 3. The agree- 
ment between equations and the computed values, 
as shown in Fig. 5, provides some support for the 
validity of  both the computer program and the 
finite element layout. 

Since the Von Mises stress is the cause of  creep, 
its variation along the z-axis is shown in Fig. 6. It 
turns out to be the same as twice the maximum 
shear stress (orr = o00, o~z = 0). The curves are 
the theoretical values of  Terazawa [7] (uniform- 
stress boundary condition). 

cr e 1 -- 2v z [(1 -- 2v)z 2 --  2(1 + v)a 2 ] 

o 2 2(z 2 + a2) 3/2 

(31) 

and those of  Harding and Sneddon [8] (uniform- 
displacement condition): 

cr~ = [ ( 7 - - 2 v ) z  2 + ( 1 - - 2 v ) a  2]a 2 (32) 
G 4(Z 2 -t- a 2 )  2 

By using v = 0.416 they are included in Fig. 6 for 
comparison. While at z = 0, one approaches (1 -- 
2v)/2 and the other (1 -- 2v)/4, they both approach 
(7 -- 2v)a 2/4z "2 at large z. 

It is seen from Fig. 6 that, for both the uniform- 
stress boundary condition and the uniform- 
displacement boundary condition, the maximum 
2220 

Von Mises stress is not located directly underneath 
the punch but at a distance below it approximately 
equal to the radius of  the punch. This suggests that 
deformation is the most severe not at the p u n c h -  
sample interface but within the material. As a re- 
sult, the punch-sample interfacial structure is not  
as important as in the case of  conventional com- 
pression creep. 

Now to compute the impression creep; the 
power law constitutive equation was obtained 
from conventional compression tests reported in 
the previous paper. The results give Equation 18 
with A = 0.84 and n = 4, when ae is in MNm -2 
and At in seconds. These and the elastic constants 
are all the materials properties needed for the com- 
putation of  punch velocity. The program started 
by using a constant and uniform a, (the punching 
stress) over all the elements under the punch. The 

o- = 4 . 0  x 105 N rfi2 

T = 3 7 ~  

0 

4 

V E L O C I T Y  I 0  -z m sec -j 

Figure 7 Velocity profile under punch for uniform-stress 
boundary condition. 
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T = 3 7 o c  

o- = 4 . 0 x 1 0 5  N rfi2 

T = 3 7 %  

f -  
VELOCITY  I 0  "r rn sec -E 

Figure 8 Velocity profile under punch for initially uniform- 
displacement boundary condition and constant local 
stress during creep. 

velocity profile obtained is shown in Fig. 7, and is 
not the experimental condition. This result in- 
dicates that the stress under the punch is not 
uniform during creep. A stress distribution based 
on uniform displacement under the punch at time 
zero and held constant during creep gives a velocity 
profile shown in Fig. 8, which is again not the 
experimental condition. However, an inspection of  
Figs. 7 and 8 suggests that perhaps an average of  

~ 0 

2 

3 

VELOCITY  I0  -r m sec -I  

Figure 9 Velocity profffle under punch by using average 
nodal forces of the two previous boundary conditions. 

the two stress distributions may give a constant 
velocity profile. This is indeed found to be the 
case as shown in Fig. 9. 

Because of  long computing times, it is difficult 
to reach steady state on the computer. Instead, the 
impressing velocity (of the punch) is plotted versus 
the reciprocal time as shown in Fig. 10. The com- 
puter results are then fitted by multiple-order 
polynomials of  reciprocal time to extrapolate to 
infinite time. It is seen that the extrapolated values 
agree reasonably well with experiments. 

Figure 10 Polynomial curve fitting for 
the extrapolation to steady-state im- 
pressing velocities at three different 
punching stresses. 
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Figure 11 A comparison between calculated and exper- 
imental impressing velocities as a function of punching 
stress. 

The stress dependence of  impressing velocity at 
37~ is shown in Fig. 11 together with some 
experimental data. The agreement seems satisfac- 
tory. From a dimensional analysis of  Equation 17, 
it is obvious that for the same punching stress, the 
steady-state impressing velocity is proportional to 
the punch radius, as long as the specimen is suf- 
ficiently large compared to the punch. As shown 
in the previous paper, this punch size effect has 
been confirmed by experiment. 

7. Summary and conclusions 
(1) Finite element analysis is applied to impression 
creep testing. The potential energy of  the system is 
minimized by holding creep strain constant. The 
creep strain distribution is based on yon Mises flow 

rule. A power law constitutive equation between 
yon Mises stress and creep rate is used for the 
deformation of  each and every element. Some 
approximations are used to simplify the calcu- 
lations. 

(2) The elastic stresses calculated by the finite 
element analysis agree well with theoretical values 
of  Terazawa and of  Harding and Sneddon for the 
semi-infinite medium. 

(3) For succinonitrile crystals, the impressing 
velocity calculated at several punching stresses and 
extrapolated to steady-state conditions agree very 
well with experimental values presented in the 
previous paper. The stress distribution under the 
punch during creep is adjusted so that the displace- 
ment velocity is uniform under the punch. 

(4) This analysis establishes a power law be- 
tween the steady-state impressing velocity and 
punching stress as a direct consequence of  the 
same power law between steady-state creep and 
yon Mises stress assumed for each element. 
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